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Alzheimer disease (AD) is a human neurodegenerative disease 
characterized by co-existence of extracellular senile plaques (SP) 
and neurofibrillary tangles (NFT) associated with an extensive 
neuronal loss, primarily in the cerebral cortex and hippocampus. 
Several studies suggest that caspase(s)-mediated neuronal death 
occurs in cellular and animal AD models as well as in human brains 
of affected patients, although an etiologic role of apoptosis in such 
neurodegenerative disorder is still debated. This review summarizes 
the experimental evidences corroborating the possible involvement 
of apoptosis in AD pathogenesis and discusses the usefulness of ad 
hoc devised in vitro approaches to study how caspase(s), amyloido-
genic processing and tau metabolism might reciprocally interact 
leading to neuronal death.

Introduction

Alzheimer disease (AD) is the most common human late-onset 
and sporadic neurodegenerative disorder characterized by global 
cognitive decline including a progressive loss of memory, orienta-
tion and reasoning. The neuropathological hallmarks of AD include 
synaptic loss and/or dysfunction, diminished neuronal metabolism, 
senile plaques (SPs), neurofibrillary tangles (NFTs) and loss of 
multiple neurotransmitter systems.1

SPs typically consist of aggregated amyloid beta (Aβ), abnormal 
neurites and glial cells. The accumulation of Aβ due to a dysregu-
lated proteolytic processing of its precursor molecule, the Amyloid 
Precursor Protein (APP), exerts a crucial role in neuronal loss or 
dysfunction through a cascade of events which include oxidative 
stress, membrane damage, altered mitochondrial metabolism, abor-
tive cell cycle events, Ca++ imbalance, protein misfolding, DNA 
damage/repair and inflammatory processes.2

NFTs are intracellular accumulations of cytoskeletal elements, 
largely made of Paired Helical Filaments (PHF), whose main 
constituent is abnormally phosphorylated tau. Tangles could poten-
tially damage neurons by disrupting transport of various cellular 
components, including that of Nerve Growth Factor (NGF)-
receptor complex, thus leading to degeneration of the tangle-bearing 
neurons.3

Thanks to the experimental work carried out in hundreds of 
laboratories, it has been unequivocally demonstrated that both APP 
and tau proteins play a crucial role in the onset of AD. Moreover, 
several strong genetic evidences corroborate the “amyloid cascade 
hypothesis” according to which Aβ production is the trigger factor 
affecting downstream tau metabolism.4 Mutations in several known 
genes linked to AD familial forms (APP, presenilin-1 or presenilin-2 
gene) and genetic or environmental risk factors (Apolipoprotein E 4 
variant and metals or pesticides exposure) alter Aβ cellular processing 
or its properties, leading to an increase of the Aβ42/40 ratio or its 
propensity to aggregate.1 Moreover, Aβ causes caspases-mediated tau 
cleavage and hyperphosphorylation by activating specific kinases, 
thus promoting its aggregation, mis-localization and accumulation 
with consequent NFTs formation.5

Although it is still unclear why specific vulnerable neuronal 
population, with special emphasis to forebrain cholinergic neurons 
which provide the majority of cholinergic innervations to cerebral 
cortex and hippocampus, die in the brain of AD patients, a growing 
number of studies actually indicate apoptosis as possible initial 
trigger of the pathology.6,7

In this review we will summarize the current findings regarding 
this hypothesis and we will discuss the convenience of ad hoc devised 
in vitro models to dissect the single molecular steps linking apoptosis 
with Aβ production and tau altered processing. A special emphasis 
will be devoted to analyze the possible crucial role of NGF and other 
neurotrophins, since the evidences demonstrating its involvement in 
the onset of AD are becoming conspicuous.8

Alzheimer Disease and Apoptotic Events

Several studies presently indicate that apoptosis might occur in, 
and contribute to, AD onset and progression.7 Stimuli for apoptosis 
in AD include increased oxidative stress, dysregulation of ion homeo-
stasis, growth factor deprivation, accumulation of Aβ, metabolic 
impairment, reduced clearance of toxin, mitochondrial dysfunction, 
DNA damage, protein aggregation.9,7 Nevertheless, while the role of 
apoptosis in in vitro models and transgenic animal models of neuro-
degeneration has been largely documented, its occurrence and role 
in human postmortem AD brain is controversial. Despite a growing 
number of studies underlying caspases and apoptosis involvement in 
AD, no direct role of apoptotic death in AD etiology has still been 
proven although the presence of apoptotic bodies, DNA fragmen-
tation, granulated and marginated chromatin and shrunken and 
irregular cell shapes have been largely reported in tissue sections of 
brains from affected patients.10,11 Moreover, an imbalanced level 
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of some molecular apoptotic markers such as pro-apoptotic (Bax, 
Bak and Bad) and anti-apoptotic (Bcl-2 and Bcl-xL) proteins—
members of Bcl-2 protein family12,13—and the initiator caspases 8 
and 9 and the effector caspases 3 and 6 have been also reported in 
post-mortem brains of AD patients.11,14-20 Moreover, expression 
profiling analysis of thousands of genes in brain tissue samples from 
AD and age-matched control patients has revealed a marked decrease 
in expression of some anti-apoptotic gene such as NCKAP1.21 In 
addition, immunohistochemical and biochemical studies report 
the presence of active caspase(s) and caspase-cleaved substrates in 
neurons, around senile plaques and neurofibrillary tangles10,11,22,23 
and also in postsynaptic densities.24 Both caspase-cleaved APP and 
activated caspase 3 have been shown to be present and associated to 
granulovacuolar degeneration, a diagnostic AD neuropathological 
sign in brains of affected patients.25 Finally, a marked co-localization 
of pathological hyperphosphorylated tau, cleaved caspase-3 and 
caspase-6 have been recently reported in TUNEL-positive neurons 
in the brainstem of AD patients.26

Caspases and APP. Caspases have a direct role in amyloid 
precursor protein (APP) processing and in the biogenesis of Aβ 
peptide species.27 Particularly, the C31 C-terminal peptide obtained 
by caspase-3 mediated APP cleavage seems to mediate apoptosis by 
transcriptional regulation of some genes.28 Caspase-3 mediated APP 
cleavage also stabilizes BACE—the β-secretase enzyme initiating the 
APP cleavage to produce Aβ peptide—which accumulates in endo-
somes, where increases Aβ production.29

Exposure of cultured cortical neurons to Aβ or infection of 
rat hippocampal neurons with APP-expressing adenovirus which 
causes an Aβ accumulation, induces activation of capsase-3 and 
apoptosis,30-33 suggesting that caspase(s) not only participate in the 
generation of Aβ but they may also directly mediate its toxic effect 
on neuronal survival.34

As will be discussed below, APP-derived toxic peptides may not 
only originate by apoptosis activation but may also be responsible 
of it in viable neurons. Thus, APP-derived Aβ peptides can activate 
caspases through the extrinsic pathway, implicating binding of extra-
cellular Aβ to cell sites, while other studies suggest that the intrinsic 
pathway may be more relevant.35 Intracellular accumulation of Aβ 
in endosplasmic reticulum or endosomes may activate apoptotic 
mechanism(s) through the unfolded protein response (URP) or 
endoplasmatic reticulum stress.36 Alternatively, intracellular Aβ may 
bind to alcohol dehydrogenase within mitochondria and activates 
apoptosis causing mitochondrial stress.37 Interaction of Aβ with 
mitochondrial Cyclophilin D causes synaptic damage observed in 
AD and absence of Cyclophilin D protects neurons from Aβ- and 
oxidative stress-induced apoptotic cell death.38 Aβ 1–42 also impairs 
proteasome activity and Aβ immunotherapy rescues the proteasome 
dysfunction reported in 3X transgenic AD animal models thus 
confirming that its intracellular accumulation alters the ubiquitin-
proteasomal system in vivo.39 Aβ upregulates the intracellular levels 
of E2-25K/Hip-2, an E2 ubiquitin-conjugating enzyme, which 
stabilizes endoplasmic reticulum (ER)-resident caspase-12 protein by 
inhibiting proteasome activity.40

Pharmacological or molecular inhibition of particular members of 
the caspases family, such as caspase 2, 3, 8 and 12 has been reported 
to offer partial or complete protection against Aβ-induced apoptotic 
cell death in vitro.41-45

As far as the effect of caspase(s) inhibition on APP metabolism in 
cellular and animal models, it has been reported that specific down-
regulation of caspase-6 in human primary neuronal cultures prevents 
serum-deprivation mediated Aβ increase, as well as in vitro cell 
death.46 In a similar fashion, IETD, a caspase III inhibitor including 
caspase-6, -8 and -9 prevents APP cleavage in staurosporine-induced 
cell death in COS transfected cells.47 In agreement with previous in 
vitro experimental data, caspase inhibition in vivo by bafilomicin, a 
pan-caspase(s) inhibitor, abolishes brain trauma-induced increase in 
Aβ and reduces neuronal degeneration in hippocampus of injected 
mice.48 Finally, it is noteworthy that in vivo inhibition of cathepsin B 
improves memory and synaptic transmission in transgenic mice over-
expressing APP, interfering with amyloidogenic APP processing.49 
On the contrary, calpain inhibition is also protective in vivo against 
cognitive loss in another AD animal model-APP/PS1 mice- by 
upregulating the phosphorylation levels of the transcription factor 
CREB (cAMP Responsive Element Binding Protein) without any 
significant change in Aβ peptides levels.50

Caspases and tau. Studies from cellular and animal models 
indicate that caspases have also been implicated in mechanisms 
of tau-mediated neurodegeneration in AD.51,52 According to this 
hypothesis, Aβ peptide promotes neuronal pathological tau fila-
ment assembly by triggering caspases activation leading to tau 
cleavage.53 This event, in turn, generates a proteolytic products 
that assemble more rapidly and extensively into tau patholog-
ical filaments.54,55 Aberrant activation of caspase(s), following 
apoptotic stimuli or neurodegenerative insults, may produce 
one or more toxic NH2-tau fragments, that further contribute 
to propagate and increase cellular dysfunctions in AD.56,57 
Colocalization of hyperphosphorylated tau and active caspase-3 
and 6 has been recently detected in brainstem of young and 
old AD patients.26 The finding that the rTg4510 tau transgenic 
mouse shows caspase-3 activation provides additional supporting 
evidence linking caspase-3 and tau-mediated neurodegeneration.58 
Caspase-9 activation and caspase-cleaved tau forms have been 
documented in AD hippocampal brain sections.18 Finally over-
expression of Bcl-2 in a triple transgenic Alzheimer mouse model 
harboring PS1(M146V), APP(Swe) and tau(P301L) transgenes 
limits caspase-9 activation, attenuates the processing of APP and 
tau thus reducing the number of NFTs and extracellular deposits 
of Aβ associated with the progression of this disease.59

It remains to be determined if frank apoptosis is a necessary and 
early event in the neurodegeneration. According to this view, a posi-
tive feedback loop in neurodegeneration would be activated whereby 
caspase(s) generate Aβ, which in turn exerts a noxious action on 
tau proteins and further activates caspase(s) in neighboring neurons 
eventually dying by apoptosis. In this context, other modes of cell 
death could contribute to neuronal loss in AD60 and other proteases, 
such as calpain and cathepsin, can be also directly or indirectly acti-
vated by caspases during apoptosis.61 Finally, an intricate cross-talk 
between these proteases systems has been reported during apoptosis 
of neuronal cells.62 Thus, although other caspase-independent 
pathways may contribute to the AD progression, the in vivo treat-
ment with specific caspase(s) inhibitors, which are able to penetrate 
the blood-brain barrier, may still offer an useful and alternative 
therapeutic strategy to delay selective neuronal loss associated to such 
neurodegenerative disease.
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and  progressively reduced mitochondrial function also contribute 
to neuronal damage.87,88 Superoxide dismutase, N-acetyl-L-cysteine 
and other free radical scavengers partially protect CGNs form death, 
improving mitochondrial energy metabolism.89,90

The bulk of studies on CGNs, apoptosis and events related to AD 
prospected a first, consistent positive answer to their possible link. 
Nevertheless, the observation that these neurons are not the most 
vulnerable population affected in AD and that few clinical signs of 
cerebellar anatomopathological dysfunction have been reported in 
AD patients leaves room for some criticisms about its fully usefulness 
as in vitro model for this human neurodegenerative disease.

NGF-Deprived PC12 and Hippocampal/Cortical Neuronal 
Models

NGF (Nerve Growth Factor) is the first neurotrophin to be 
discovered and is not only endowed with the property of inducing 
growth of nerve fibers in target neurons, but also of supporting their 
life via its antiapoptotic action91 Numerous in vitro and in vivo data 
suggest a tight causal relationship between an imbalance in NGF 
receptor signaling, the activation of amyloidogenic pathway and 
altered tau metabolism in onset and progression of AD-like neuro-
degeneration.

TrkA, the high affinity NGF receptor, has been found decreased in 
the basal forebrain92-97 and in the cortex.98-100 A switch from TrkA 
to p75, the low affinity death receptor, it has been described during 
neuronal aging resulting in increased amyloidogenic processing 
of APP.101-103 p75NTR expression has been directly linked to 
changes occurring in AD,104 including the death of basal forebrain 
neurons,105,106 hypothesized to occur through a direct binding 
of oligomeric Aβ1-42 peptides to p75.103,107,108 Moreover, some 
evidences have previously showing a transcriptional p75-mediated 
regulation on the APP promoter leading to an increase of secreted 
amyloid precursor protein (sAPP)109,110 in neurons.

Several studies report a regulative role of NGF on tau phospho-
rylation. Stimulation of undifferentiated PC-12 with NGF causes a 
dephosphorylation of tau proteins,111 although an increase of Gsk3β-
mediated tau phosphorylation has also been observed. Interestingly, 
this tau phosphorylation at defined sites might be required for 
proper anterograde organelle/mitochondrial transport in differenti-
ated cells.112 On the other hand, NGF deprivation in differentiated 
PC12 induces apoptosis and hyperphosphorylation both of tau and 
membrane-bound high molecular weight (HMW) tau, especially in 
the neuritis. These changes are accompanied by an impairment of its 
microtubule binding ability and a marked decrease of its solubility. 
However, in the last stages of apoptosis, tau is dephosphorylated in 
dying neuronal PC12.113,114 In addition, in this apoptotic neuronal 
model, NGF deprivation also causes an early, caspase-mediated tau 
cleavage at NH2 domain with the appearance of the 20–22 kDa tau 
fragment115 which has been previously demonstrated to be mark-
edly neurotoxic in vitro when overexpressed in primary neuronal 
cultures.116 NGF might control the endogenous tau protein levels, 
regulating its metabolism via proteasomal degradation, as demon-
strated by NGF-dependent ubiquitination of tau in cultured cells.117 
Finally, several evidences support the hypothesis that the role of 
tau in axonal transport might affect NGF-TrkA signaling in vivo. 
Indeed, experimental data from retrograde labeling of basal forebrain 
neurons after injection of fluorogold into multiple sites in cortex and 

The Cerebellar Granule Cells (CGC) Model

A decade ago, our research group hypothesized a possible tight 
link between improper activation of apoptosis and events related to 
AD. Cerebellar Granule Neurons (CGNs) from 8 days old rat require 
depolarizing potassium concentration (25 mM K+) for an optimal 
survival, when explanted in vitro. Upon reduction of extracellular 
potassium concentration to a more physiological concentration of 5 
mM, these neurons progressively undergo apoptosis63 which is largely 
blocked by neuroprotective agents able to increase calcium influx.64 
It has been hypothesized that in vitro depolarizing conditions are 
necessary to maintain intracellular high levels of free calcium, thus 
mimicking the in vivo situation of continuous electrical stimulation 
related to the developmental establishment of excitatory synapses 
originating from mossy fibers.9,65 The apoptotic process, as well as 
nuclear and mitochondrial damage, are reversible up to 4–8 hours 
of induction suggesting that no rescue is possible even if CGNs are 
returned to high K+ medium.66,67 Activation of caspase-3 has been 
reported after serum/K+ starvation68 and cell death is attenuated by 
the selective caspase-3 inhibitor z-DEVD-fmk;69,70 although the 
main effect of such caspase is on DNA fragmentation and chromatin 
condensation rather than preventing apoptosis.71 Such conflicting 
data may reflect the finding that neuronal apoptosis triggered by 
potassium reduction involves a more intricate caspase(s) activation 
cascade72 and a cross-talk between caspase(s) and other protease(s) 
further complicates the death signaling.73-76 Neurotrophin and 
physiological neuropeptides, such as IGF, bFGF, BDNF, PACAP, SP 
and cAMP63,64,76-79 also exert their protective action in this neuronal 
paradigm through different mechanism including the activation of 
PI3-kinase/Akt pathway;76,78,80,81 the stimulation of PKA and/or 
MAP kinases signaling.82,83

We have been reported that the pro-apoptotic shifting to 
a low potassium medium activates an amyloidogenic process, 
which rapidly and irreversibly leads to an unbalance between the 
“physiological” α-secretase-mediated pathway and the β-α-secretase 
mediated increased production of Aβ.84 Moreover, the mono-
meric and oligomeric forms of 4-kDa Aβ are significantly higher 
in depolarization-stimulated secretion compared with controls. 
Such increments are paralleled by a corresponding increase of the 
β-APPs/α-APPs ratio in apoptotic secretion, without any signifi-
cant change of intracellular full-length APP levels. An interesting 
aspect of such a process is that the released pool of Aβ may activate 
a toxic loop that further accelerates and propagates the process of 
neurodegeneration, affecting neighboring healthy neurons. Indeed, 
co-incubation of apoptotic cultures with antibodies directed against 
Aβ significantly slows down the extension of cell death and quantita-
tively increases the neuronal survival rate by approximately 50%,85,86 
thus suggesting that Aβ peptides may act as soluble and diffusible 
apoptotic death mediators.

Contextually to the significant increase of amyloidogenic metabo-
lism of APP, also tau undergoes post-translational modifications. 
After 6 h of potassium deprivation, a change in tau phosphoryla-
tion state and caspase(s) and calpain-mediated cleavage occurs 
in concomitance with a progressive disassembly of cytoskeleton, 
eventually leading to the generation of a 17 kDa fragment which 
accumulates in the perikarya of dying cells.73 Furthermore, following 
the apoptotic trigger, a reactive oxygen species (ROS) production 
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in neuronal in vitro models whose viability is strictly dependent 
on NGF, an involvement of such proteases in apoptotic cell death 
caused by NGF deprivation126,127 and in the p75-mediated cell 
death caused by exogenous addition of Aβ to neuroblastoma 
cells128 has been largely documented. The studies performed in 
NGF-deprived PC12 cells show that, among all caspase(s) inhibi-
tors tested, only blockage of executor caspases 2, 12, 6 and 8 exerts 
an almost total protection from death and from Aβ production, 
whereas inhibition of effector caspase 3 does not exert a similar 
action.124 In a similar fashion and in agreement with others,129,130 
treatment with Z-DEVD-fmk, a specific inhibitor of caspase-3 
only partially rescued hippocampal neurons from death, probably 
because this protease is not activated at early times upon NGF 
withdrawal in this neuronal paradigm (Amadoro et al. submitted). 
On the contrary, pharmacological inhibition of caspase 3 markedly 
inhibited caspases-mediated tau cleavage, without any significant 
effects on GSK3β-mediated tau hyperphosphorylation (Amadoro et 
al. submitted). Moreover, the finding that the general cell-permeable 
caspase inhibitor z-VAD does not significantly affect ThT-positive 
Aβ structures production in NGF-deprived PC12, whereas partially 
rescues cells from apoptotic death,124 delineates a complex chain of 
events between NGF withdrawal, Aβ production, apoptosis and tau 
modifications. As mentioned above, the causal and temporal rela-
tionship between caspases-mediated cell death and APP processing 
appears cell-specific and signaling-dependent and probably initiates 
a toxic cycle of cellular Aβ production/neuronal loss, which is diffi-
cult to elucidate in its actual sequence. Thus, although elevated Aβ 
may lead to apoptotic cell death after injury or disease and caspase(s) 
inhibition may protect against this event, a causal relationship could 
not be proven as blockade of caspase(s) might also prevent tau 
modifications and cell death unrelated to Aβ toxicity. Further inves-
tigations aimed at selectively reducing Aβ levels, without targeting 
caspase(s) activity (i.e., by directly altering α, β and/or α secretase 
activity), will provide additional insights into this cascade to defini-
tively establish if apoptosis is the primary cause of Aβ production/
tau modification or is it a sort of downstream consequence, eventu-
ally ending in cell death.

hippocampus, report that an altered compartmentalization of phos-
photau, GSK3 and TrkA immunoreactivity may be responsible for 
the failure of axonal trafficking and lack of trophic support in aged 
cholinergic cells.118,119

The hypothesis that a chronic NGF deprivation may be one of the 
factors involved in the etiology of sporadic forms of AD is validated 
by the findings that acute treatment with NGF or acetylcholine 
esterase (AChE) inhibitors, such as ganstigmine and donepezil, 
rescues the cholinergic and behavioral deficit in AD11 mice. These 
mice are an in vivo AD transgenic model, in which the phenotypic 
knockout of NGF is achieved by the expression of recombinant 
neutralizing antibodies.120,121 Finally, clinical encouraging data from 
ongoing gene therapy trial using NGF-grafted autologous fibroblasts 
injected into the basal nucleus of Meynert (nbM),122 further validate 
the rational for the therapeutic administration of human recombi-
nant NGF in AD patients.123

In view of these findings, we carried out a set of experiments in 
NGF-deprived differentiated PC12 cells124,115 and described the 
crucial steps linking NGF withdrawal, activation of amyloidogenesis, 
tau truncation and caspase(s)-mediated execution of neuronal death. 
These studies have been replicated in primary hippocampal and 
cortical neurons showing that, upon NGF removal, the amyloido-
genic pathway is activated with consequent intra and extracellular 
accumulation of Aβ peptides and apoptotic death. The overproduced 
Aβ is partly released in the culture medium, where it aggregates to 
form structures largely reminiscent of those forming senile plaques, 
and in part aggregates within neurons. All these events are prevented 
by β and α secretase inhibitors, by antibodies directed against 
Aβ peptides, or by partial silencing of APP mRNA, whereas they 
are mimicked by Aβ 1–42 peptide exposure. Conversely, neurons 
deprived of serum largely die but, although the amyloidogenic 
pathway is activated, the exposure to anti Aβ antibodies does not 
protect from apoptotic death, further suggesting that the activa-
tion of amyloidogenesis following NGF withdrawal is not a simple 
consequence of an apoptotic trigger but it is strictly related to lack 
of NGF supply.125

In the same experimental model we have also demonstrated an 
early involvement of tau protein which, under NGF deprivation, 
undergoes GSK3β mediated hyperphosphorylation at pathog-
nomonic amino acids such as Ser 262 and Thr 231, and is 
subsequently degraded generating a toxic NH-2-derived 220 amino 
acid peptide.116 Such tau hyperphosphorylation, as well as apop-
totic death, is blocked by Aβ antibodies or by specific β and/
or α-secretases inhibitors and is mimicked by Aβ 1–42 peptide, 
suggesting that Aβ species are the initial trigger. Tau subsequently 
detaches from microtubules, thus shifting the equilibrium toward 
its disassembled state and indirectly affecting the whole axonal 
transport, eventually leading to apoptotic death (Amadoro et al. 
submitted). Once tau is displaced from microtubules, it would be 
further phosphorylated at other fibrillogenic site and/or cleaved by 
proteases (i.e., caspase(s) and calpain), causing disruption of micro-
tubule transport along axons and consequent synaptic dysfunction. 
All these events are summarized in the Figure 1.

To our knowledge, the NGF-deprived hippocampal culture is 
presently the only in vitro model whereby both APP, tau altered 
processing and apoptosis, have been investigated together under 
strictly controlled conditions. Regarding the direct role of caspases 

Figure 1. Schematic representation of the apoptotic mechanisms by which 
the interruption of NGF signaling affects APP processing and Tau metabolism 
in hippocampal neurons. For more details see text.
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